If it's not what You are looking for type in the equation solver your own equation and let us solve it.
99n^2+18n=0
a = 99; b = 18; c = 0;
Δ = b2-4ac
Δ = 182-4·99·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-18}{2*99}=\frac{-36}{198} =-2/11 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+18}{2*99}=\frac{0}{198} =0 $
| x+6-4=-4(2x) | | 6/6x+4=2/x-4 | | 4(1+3)=5(x-2) | | 9/5+3/5x=47/20+7/4x+3/4 | | 10+5/4r=-10 | | x^2-5x-20=-2x-2 | | 10y=27+y | | x^2-17x+23=-5x-4 | | 22=3x-4+x/4 | | 10m-3(2m-9)=9(m+1)/1 | | -20=-6f | | -0.01y+0.14(800-y)=0.35y | | 14g=18 | | 22=3•-4+x/4 | | 2(w+6)=7w+2 | | 5x+1/6+2x+3/5=5 | | (x^2-4)^2+4(x^2-4)-45=0 | | -2(1-3x)=22-3)x-13) | | x^2+4x-6=8x-1 | | 0.5+0.9(20-x)=15.2 | | -15=-10x | | 4-8(8r+5)=35+7r | | 19=-9a | | f+8/11=4/5 | | -18x-20+12x=2x+4-12x | | 32-5=n | | x^2-5x-6=-3x+2 | | 7+2c-4^2=-9 | | 4x-42=18 | | 5y-(-3y+3)=5 | | 4x^2+56x-245=0 | | 9-(x+2)=8 |